Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Graeme J. Gainsford* and Anthony D. Woolhouse

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand

Correspondence e-mail: g.gainsford@irl.cri.nz

Key indicators

Single-crystal X-ray study
$T=130 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.092$
Data-to-parameter ratio $=12.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

exo-7-Phenyl-3-n-propyl-5-oxa-2-thia-6azabicyclo[3.2.0 ${ }^{1,4}$]hept-6-ene 2,2-dioxide

The title compound, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}$, contains the novel exothiabicyclo[3.2.0 ${ }^{1,4}$]hept-6-ene ring system, with pendant phenyl and n-propyl substituents. Both fused rings in the bicyclic system are planar, their planes forming a dihedral angle of $65.6(1)^{\circ}$.

Comment

The title compound, (I), was prepared as part of a study of the use of carnivore odours in mammal pest control; it is closely related to a previously reported structure of exo-7-aza-6-oxa-4-n-propyl-3-thiabicyclo[5.4.1 $\left.{ }^{1,7} 1^{2,5}\right]$ undecane 3,3-dioxide (Woolhouse et al., 1993), which had been obtained from a thiete sulfone (Gainsford \& Woolhouse, 1994).

(I)

The crystal structure of (I) is built of isolated molecules (Fig. 1) associated into infinite chains along the b axis of the crystal via weak intermolecular contacts $\mathrm{C} 14-\mathrm{H} 14 A \cdots 5^{\mathrm{i}}$ [symmetry code: (i) $1 / 2-x, 1 / 2+y, 1 / 2-z$], with $\mathrm{H} 14 A \cdots \mathrm{O} 5$ and C14 \cdots O5 distances of 2.56 (2) and 3.343 (3) \AA, respectively.

The fused four- and five-membered rings are each planar, with average deviations of 0.015 (2) and 0.011 (2) \AA, respectively; their least-squares planes form a dihedral angle of $65.6(1)^{\circ}$. The pendant planar phenyl ring (C8-C13) is twisted by $7.3(1)^{\circ}$ from the five-membered $\mathrm{C}_{3} \mathrm{NO}$ ring.

Only two other compounds have been reported [Allen \& Kennard (1993) and ConQuest (Cambridge Crystallographic Data Centre, 2002)] with an oxygen bound to the $\mathrm{C}_{3} \mathrm{SO}_{2}$ ring. Each of these (Beagley et al., 1992; Adiwidjala et al., 2000) have the oxygen bound to the carbon remote from the sulfur heteroatom, as is found when the fused ring system is constructed by cycloaddition.

Experimental

To an ethereal solution of $2-n$-propyl- Δ^{3}-thiete sulfone $(0.68 \mathrm{~g}$, $4.7 \mathrm{mmol})$ and benzhydroxamoyl chloride $(0.8 \mathrm{~g}, 5.1 \mathrm{mmol})$ at 273 K was added, dropwise, a solution of triethylamine ($0.52 \mathrm{~g}, 5.1 \mathrm{mmol}$) in ether. The solution was stirred for 4 h at ambient temperature, then filtered and concentrated. The compound was obtained with the endo-fused stereoisomer ($0.62 \mathrm{~g}, 50 \%$) by flash chromatography over silica ($0.42 \mathrm{~g}, 34 \%$ yield); crystals were grown from an ethylacetate/ hexane mixture.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=265.32$
Monoclinic, $P 2_{\AA} / n$
$a=12.593(5) \AA$
$b=5.081(2) \AA$
$c=20.169(8) \AA$
$\beta=104.028(15)^{\circ}$
$V=1252.0(9) \AA^{3}$
$Z=4$

Data collection

Siemens/Nicolet R3m four-circle diffractometer
ω scans
Absorption correction: none
2933 measured reflections
2794 independent reflections
1801 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.092$
$S=0.85$
2794 reflections
223 parameters
$D_{x}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 24
reflections
$\theta=5.6-14.2^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=130$ (2) K
Needle, colourless
$0.44 \times 0.19 \times 0.04 \mathrm{~mm}$
$\theta_{\text {max }}=27.9^{\circ}$
$h=0 \rightarrow 16$
$k=0 \rightarrow 6$
$l=-26 \rightarrow 25$
3 standard reflections every 97 reflections intensity decay: none

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

S2-O21	$1.4451(17)$	O5-C4	$1.453(2)$
S2-O22	$1.4413(15)$	$\mathrm{N} 6-\mathrm{C} 7$	$1.298(2)$
S2-C1	$1.834(2)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.502(3)$
S2-C3	$1.835(2)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.545(3)$
O5-N6	$1.411(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.557(3)$
O22-S2-O21	$118.61(9)$	$\mathrm{C} 4-\mathrm{C} 1-\mathrm{S} 2$	$89.86(13)$
C1-S2-C3	$80.68(10)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{S} 2$	$89.46(13)$
N6-O5-C4	$109.94(14)$	$\mathrm{O} 5-\mathrm{C} 4-\mathrm{C} 1$	$104.82(17)$
C7-N6-O5	$110.41(16)$	$\mathrm{O} 5-\mathrm{C} 4-\mathrm{C} 3$	$113.08(17)$
C7-C1-C4	$101.85(16)$	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3$	$99.92(16)$
C7-C1-S2	$112.64(15)$	$\mathrm{N} 6-\mathrm{C} 7-\mathrm{C} 1$	$112.90(18)$
C4-O5-N6-C7	$-2.9(2)$	$\mathrm{O} 5-\mathrm{N} 6-\mathrm{C} 7-\mathrm{C} 8$	$177.53(17)$
S2-C1-C4-O5	$-114.97(14)$	$\mathrm{S} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 6$	$95.10(19)$
C7-C1-C4-C3	$115.42(17)$	$\mathrm{S} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$-80.6(2)$

All H atoms were refined with isotropic displacement parameters.
The $\mathrm{C}-\mathrm{H}$ bonds are in the range 0.92 (3) -1.01 (3) \AA.

Figure 1
The molecular structure of (I) (Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level. H atoms have arbitrary radii.

Data collection: R3M Software (Siemens, 1983); cell refinement: R3M Software; data reduction: R3M Software; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: $S H E L X L 97$ (Sheldrick, 1997); molecular graphics: ORTEP-3 in WinGX (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990).

We thank Dr J. Wikaira and Professor Ward T Robinson of the University of Canterbury for their assistance.

References

Adiwidjala, G., Olbrich, F., Schulze, O. \& Voss, J. (2000). Thesis, University of Hamburg, Germany.
Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Beagley, B., James, M. R., Pritchard, R. G., Raynor, C. M., Smith, C. \& Stoodley, R. J. (1992). J. Chem. Soc. Perkin Trans 1, pp. 2371-2382.
Cambridge Crystallographic Data Centre (2002). ConQuest. Version 1.3.
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gainsford, G. J. \& Woolhouse, A. D. (1994). Acta Cryst. C50, 606-607. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1983). R3M Software. Version 4.11. Siemens Analytical X-ray
Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Woolhouse, A. D., Gainsford, G. J. \& Crump, D. R. (1993). J. Heterocycl. Chem. 30, 873-880.

